Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(8): 3679-3685, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353671

RESUMO

Recently, organic photoelectrochemical transistor (OPECT) bioanalysis has become a prominent technique for the high-performance detection of biomolecules. However, as a sensitive index of the OPECT, the dynamic regulation transconductance (gm) is still severely deficient. Herein, this work reports a new photosensitive metal-organic framework (MOF-on-MOF) heterostructure for the effective modulation of maximum gm and natural bienzyme interfacing toward choline detection. Specifically, the bidentate ligand MOF (b-MOF) was assembled onto the UiO-66 MOF (u-MOF) by a modular assembly method, which could facilitate the charge separation and generate enhanced photocurrents and offer a biophilic environment for the immobilization of choline oxidase (ChOx) and horseradish peroxidase (HRP) through hydrogen-bonded bridges. The transconductance of the OPECT could be flexibly altered by increased light intensity to maximal value at zero gate bias, and sensitive choline detection was achieved with a detection limit of 0.2 µM. This work reveals the potential of MOF-on-MOF heterostructures for futuristic optobioelectronics.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Peroxidase do Rábano Silvestre/química , Colina , Técnicas Biossensoriais/métodos
2.
Angew Chem Int Ed Engl ; 62(29): e202302930, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37189290

RESUMO

Single-cell epigenetics is envisioned to decipher manifold epigenetic phenomena and to contribute to our accurate knowledge about basic epigenetic mechanisms. Engineered nanopipette technology has gained momentum in single-cell studies; however, solutions to epigenetic questions remain unachieved. This study addresses the challenge by exploring N6-methyladenine (m6 A)-bearing deoxyribozyme (DNAzyme) confined within a nanopipette for profiling a representative m6 A-modifying enzyme, fat mass and obesity-associated protein (FTO). Electroosmotic intracellular extraction of FTO could remove the m6 A and cause DNAzyme cleavage, leading to the altered ionic current signal. Because the cleavage can release a DNA sequence, we simultaneously program it as an antisense strand against FTO-mRNA, intracellular injection of which has been shown to induce early stage apoptosis. This nanotool thus features the dual functions of studying single-cell epigenetics and programmable gene regulation.


Assuntos
DNA Catalítico , DNA Catalítico/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Regulação da Expressão Gênica , Epigênese Genética , RNA Mensageiro/metabolismo
3.
Angew Chem Int Ed Engl ; 62(9): e202215801, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36550087

RESUMO

Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Proteína Desglicase DJ-1 , Íons , Peptídeos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas , Proteína Desglicase DJ-1/farmacologia , Proteína Desglicase DJ-1/uso terapêutico , Estresse Oxidativo , Acetato de Tetradecanoilforbol
4.
Front Pharmacol ; 13: 950571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210843

RESUMO

BRAF inhibitors are commonly used in targeted therapies for melanoma patients harboring BRAFV600E mutant. Despite the benefit of vemurafenib therapy, acquired resistance during or after treatment remains a major obstacle in BRAFV600E mutant melanoma. Here we found that RSK2 is overexpressed in melanoma cells and the high expression of RSK2 indicates poor overall survival (OS) in melanoma patients. Overexpression of RSK2 leads to vemurafenib resistance, and the deletion of RSK2 inhibits cell proliferation and sensitizes melanoma cells to vemurafenib. Mechanistically, RSK2 enhances the phosphorylation of FOXO1 by interacting with FOXO1 and promoting its subsequent degradation, leading to upregulation of cyclin D1 in melanoma cells. These results not only reveal the presence of a RSK2-FOXO1-cyclin D1 signaling pathway in melanoma, but also provide a potential therapeutic strategy to enhance the efficacy of vemurafenib against cancer.

5.
Angew Chem Int Ed Engl ; 61(47): e202212752, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36173932

RESUMO

Rational utilization of the rich light-bio-matter interplay taking place in single-cell analysis represents a new technological direction in the field. The light-fueled operation is expected to achieve advanced photoelectrochemical (PEC) single-cell analysis with unknown possibilities. Here, a PEC nanoreactor capable of single-cell sampling and near zero-background Faradaic detection of intracellular microRNA (miR) is devised by the construction of a small reaction chamber accommodating the target-triggered hybridization chain reaction for binding the metallointercalator of [Ru(bpy)2 (dppz)]2+ as the signal reporter. Light stimulation of the dsDNA/metallointercalator adduct will induce the generation of photocurrents, underpinning a zero-biased and near zero-background PEC method toward Faradaic detection of non-electrogenic miR at the single-cell level. Using this nanotool, lower miR concentration in the near-nucleus region than that in the main cytosol was revealed.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/análise , DNA/metabolismo , Hibridização de Ácido Nucleico , Nanotecnologia , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
Anal Chim Acta ; 1199: 339560, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35227381

RESUMO

Target biomarker detection with high accuracy in biological sample is necessary for the constructed immunoassays. Herein, a novel and enhanced cathodic immunosensor supported by photoanode was designed for sensitive and specific detection of human chorionic gonadotropin (HCG). Specifically, the electrode of TiO2 nanotube with N doping (TiO2:N) was fabricated and assembled with AgInS2 quantum dots (QDs) to acquire the TiO2:N/AgInS2 photoanode. For the sensing cathode, Pt nanoparticles (NPs) were decorated on carbon nanotubes (CNTs) to prepare the CNT/Pt cathodic matrix and was used to modify capture HCG antibody (Ab). In this photoelectrochemical (PEC) sensing system, the TiO2:N/AgInS2 photoanode served as the signal-converting element to produce prominent current signal, while the immune recognition events occurred on the sensing cathode to evidently change the initial current signal from steric hindrance effect. Profiting by excellent photoelectric property and good anti-interference ability of this featured PEC system, the developed cathodic immunosensor demonstrated high sensitivity and specificity for the detection of target HCG antigen (Ag). This photoanode-supported cathodic sensing strategy provided a potential path forward to exploit other enhanced PEC immunosensors in the application of biological samples.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Gonadotropina Coriônica , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Limite de Detecção , Titânio/química
7.
Exploration (Beijing) ; 2(5): 20220025, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37325507

RESUMO

The use of double-barreled nanopipette (θ-nanopipette) to electrically sample, manipulate, or detect biomaterials has recently seen strong growth in single-cell studies, driven by the potential of the nanodevices and applications that they may enable. Considering the pivotal roles of Na/K ratio (RNa/K) at cellular level, herein we describe an engineered θ-nanopipette for measuring single-cell RNa/K. The two independently addressable nanopores, located within one nanotip, allow respective customization of functional nucleic acids but simultaneous deciphering of Na and K levels inside a single cell of a non-Faradic manner. Two ionic current rectification signals, corresponding to the Na- and K-specific smart DNA responses, could be easily used to derive the RNa/K. The applicability of this nanotool is validated by practical probing intracellular RNa/K during the drug-induced primary stage of apoptotic volume decrease. Especially, the RNa/K has been shown by our nanotool to be different in cell lines with different metastatic potential. This work is expected to contribute to futuristic study of single-cell RNa/K in various physiological and pathological processes.

8.
Anal Chem ; 93(4): 2706-2712, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426877

RESUMO

Accurate and sensitive detection of targets in practical biological matrixes such as blood, plasma, serum, or tissue fluid is a frontier issue for most biosensors since the coexistence of both potential reducing agents and protein molecules has the possibility of causing signal interference. Herein, aiming at detection in a complex environment, an advanced and robust peptide-based photocathodic biosensor, which integrated a recognition peptide with an antifouling peptide in one probe electrode, was first proposed. Selecting human chorionic gonadotropin (hCG) as a model target, the recognition peptide with the sequence PPLRINRHILTR was first anchored on the CuBi2O4/Au (CBO/Au) photocathode and then the antifouling peptide with the sequence EKEKEKEPPPPC was further anchored to generate an antifouling biointerface. The peptide-based photocathodic biosensor demonstrated excellent anti-interference to both nonspecific proteins and reducing agents because of the capability of the antifouling peptide. It also exhibited good sensitivity owing to the utilization of the recognition peptide rather than an antibody probe. This peptide-integrated method offers a new perspective for practical applications of photocathodic biosensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Peptídeos/química , Fotoquímica/instrumentação , Incrustação Biológica , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas Imobilizadas/química , Microscopia Eletrônica de Varredura , Fotoquímica/métodos , Espectroscopia Fotoeletrônica , Sensibilidade e Especificidade , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 60(24): 13244-13250, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33340231

RESUMO

New tools for single-cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade-off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex-specific nuclease-assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single-cell collection and electrochemical detection of intracellular RNA with cell-context preservation. Systematic studies on differentiation of oncogenic miR-10b expression levels in non-malignant breast cells, metastatic breast cancer cells as well as non-metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single-cell level.


Assuntos
Técnicas Eletroquímicas/métodos , Nanotecnologia/instrumentação , RNA/análise , Análise de Célula Única , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Microscopia de Fluorescência , RNA/metabolismo
10.
Anal Chem ; 93(2): 1200-1208, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33301293

RESUMO

Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Análise de Célula Única , Células Cultivadas , Ouro/química , Humanos
11.
Methods Mol Biol ; 2135: 237-247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32246339

RESUMO

The photoelectrochemical (PEC) biosensor, in which light is utilized to excite the photoactive species and current is employed as the detection signal, is a newly appeared yet dynamically developing technique for biological analysis. Based on the assay of DNA binding proteins upon visible light irradiation, a PEC biosensor is constructed for successfully probing a DNA-protein interaction.


Assuntos
Técnicas Biossensoriais/métodos , Pontos Quânticos/química , Proteína de Ligação a TATA-Box/metabolismo , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Ouro/química , Luz , Nanopartículas Metálicas/química , Processos Fotoquímicos , Ligação Proteica/efeitos dos fármacos , Sulfetos/química
12.
Anal Chem ; 91(10): 6403-6407, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31062591

RESUMO

Energy transfer (ET) in photoelectrochemical (PEC) bioanalysis is usually generated between noble metal nanoparticles (NPs) and traditional inorganic quantum dots (QDs). Using the innovative polymer dot (Pdot)-involved ET, this work reports the first signal-on and cathodic PEC bioanalysis toward telomerase (TE) activity in cell extracts. Specifically, the sequential binding of capture DNA (cDNA), telomerase primer sequence (TS), and Au NP-labeled probe DNA (Au NP-pDNA) on the electrode would place the Au NPs in close proximity of the Pdots, leading to obvious quenching of the cathodic photocurrent. The subsequent extension of the TS by TE in the presence of deoxyribonucleoside triphosphates (dNTPs) would then release the Ag NP-pDNA from the electrode, leading to the recovery of the photocurrent. On the basis of the Au NP-induced photocurrent quenching and the recovery of Pdots, a sensitive biosensor could thus be developed by tracking the photocurrents to probe the TE activity. This strategy allows for signal-on and cathodic PEC bioanalysis of TE, which can be easily extended for numerous other targets of interest. We believe this work could offer a new perspective for the rational implementation of Pdot-involved ET for advanced PEC bioanalysis.


Assuntos
Transferência de Energia , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos , Telomerase/metabolismo , Técnicas Biossensoriais , Extratos Celulares , Técnicas Eletroquímicas , Células HeLa , Humanos , Processos Fotoquímicos , Telomerase/química
13.
Biosens Bioelectron ; 134: 103-108, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959391

RESUMO

Photoelectrochemical (PEC) DNA bioanalysis has been drawing more attention in recent years due to the advantages of PEC technique and the vital importance of DNA biomolecules. DNAzymes are unique catalytic nucleic acid molecules that are capable of catalyzing specific biochemical reactions. Using the target-binding-induced conformation change of hairpin DNA probe to hemin/G-quadruplex-based DNAzyme and a plasmonic Au@Ag nanoparticles (NPs)/TiO2 nanorods (NRs)/fluorine-doped tin oxide (FTO) heterostructured photoelectrode, this work reported a novel and sensitive PEC DNA analysis on the basis of a DNAzyme-stimulated biocatalytic precipitation (BCP) strategy. In such a design, the BCP-induced decrease of plasmonic photocurrent can be related to the target-responsive formation of DNAzymes and thus be monitored to assay the target DNA from 0.1 and 100 nM. In brief, with a plasmonic photoelectrode and a hairpin probe, this work reported a general plasmonic DNAzyme-based PEC DNA analysis, which could also be easily extended to aptasensing toward numerous targets of interest.


Assuntos
Técnicas Biossensoriais/métodos , DNA Catalítico/química , DNA/análise , Nanopartículas Metálicas/química , Nanotubos/química , Titânio/química , Sondas de DNA/química , Técnicas Eletroquímicas/métodos , Quadruplex G , Ouro/química , Hemina/química , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Nanotubos/ultraestrutura , Prata/química
14.
Anal Chem ; 90(20): 11892-11898, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30229657

RESUMO

Highly stable circulating microRNAs (miRNAs) are currently recognized as a novel potential biomarker for clinical cancer diagnosis in the early stage. However, limited by its low concentration, high sequence similarity, as well as the numerous interferences in body fluids, detection of miRNA in whole blood with sufficient selectivity and sensitivity is still challenging. Herein, we reported the integration of entropy-driven toehold-mediated DNA strand displacement (ETSD) reaction with magnetic beads (MB) toward the energy-transfer-based photoelectrochemical (PEC) detection of the prostate carcinoma (PCa) biomarker miRNA-141 in a real blood sample. In this protocol, the ETSD reaction was divided into two steps, and cooperated with magnetic separation, target extraction and amplification could be realized in a single test and ultrasensitive detection of miRNA-141 could be achieved in undiluted whole blood sample. This work proposed a new solution for sensitive biomolecular detection in a complex biological milieu and exhibited great promise for future clinical cancer diagnosis.


Assuntos
DNA/química , Técnicas Eletroquímicas , Entropia , Ouro/química , Magnetismo , Nanopartículas Metálicas/química , MicroRNAs/sangue , Microesferas , Eletrodos , Fluorescência , Humanos , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
15.
Anal Chem ; 90(16): 9687-9690, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30078328

RESUMO

This work reports the development of three-dimensional (3D) semiconducting polymer/graphene (SP/G) networks toward sensitive photocathodic enzymatic bioanalysis. Specifically, the porous 3D graphene was first synthesized via the hydrothermal and freeze-dry processes and then mixed with semiconducting polymer to obtain the designed hierarchical structure with unique porosity and large surface area. Afterward, the as-prepared hybrid was immobilized onto the indium tin oxide (ITO) for further characterizations. Exemplified by sarcosine oxidase (SOx) as a model biocatalyst, an innovative 3D SP/G-based photocathodic bioanalysis capable of sensitive and specific sarcosine detection was achieved. The suppression of cathodic photocurrent was observed in the as-developed photocathodic enzymatic biosystem due to the competition of oxygen consumption between the enzyme-biocatalyst process and O2-dependent photocathodic electrode. This work not only presented a unique protocol for 3D SP/G-based photocathodic enzymatic bioanalysis but also provided a new horizon for the design, development, and utilization of numerous 3D platforms in the broad field of general photoelectrochemical (PEC) bioanalysis.


Assuntos
Fluorenos/química , Grafite/química , Maleatos/química , Polímeros/química , Poliestirenos/química , Sarcosina Oxidase/química , Sarcosina/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Enzimas Imobilizadas/química , Fluorenos/efeitos da radiação , Grafite/síntese química , Luz , Maleatos/efeitos da radiação , Processos Fotoquímicos , Polímeros/efeitos da radiação , Poliestirenos/efeitos da radiação , Porosidade , Compostos de Estanho/química
16.
Anal Chem ; 90(14): 8300-8303, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29956537

RESUMO

This work reported the photoelectrochemical (PEC) pH sensor for sensitive and broad-range pH measurement on the basis of semiconducting polymer dots (Pdots). The sensor was fabricated by immobilizing Pdots onto the surface of indium tin oxide (ITO). Experimental results revealed that the carboxylic acid groups of Pdots were sensitive to pH variation, which could result in conformational changes and further diffusion of carriers. Besides, different pH value could change the redox properties of the Pdots, and the photocurrent response was hence altered by the carriers produced on the Pdots. Further results demonstrated that the developed sensor exhibited variable photocurrent sensitively by responding to different pH values. This pH sensor is of high sensitivity, stability, and reversibility, which provides a bright prospect for future pH measurements in the bioanalytical field.

17.
Anal Chem ; 90(7): 4277-4281, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29528617

RESUMO

We report herein the energy transfer (ET) between semiconducting polymer dots (Pdots) and gold nanoparticles (Au NPs) in a photoelectrochemical (PEC) system and its feasibility for cathodic bioanalysis application. Specifically, COOH-capped Pdots were first fabricated and then assembled onto the indium-tin oxide (ITO) surface, followed by the modification of single-strand (ss) DNA probe (pDNA). After the DNA hybridization with the Au NP-tethered complementary ssDNA (Au NP-tDNA), the Au NPs were brought into the close proximity of Pdots. Upon light stimulation, photoluminescence (PL) was annihilated, fluorescence was attenuated, and the photocurrent intensity was evidently decreased. This ET-based PEC DNA sensor exhibited a linear range from 1 fM to 10 pM with a detection limit of 0.97 fM at a signal-to-noise ratio of 3. The present work first exploited the ET between Pdots and Au NPs, and we believe this phenomenon will spark new interest in the study of various Pdots-based ET-influenced PEC systems and thus catalyze increasing studies for specific bioanalytical purposes.

18.
Biosens Bioelectron ; 109: 190-196, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29558733

RESUMO

Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h1DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h1DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h2DNA and h3DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels.


Assuntos
Técnicas Biossensoriais , Catálise , DNA Viral/isolamento & purificação , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Fosfatase Alcalina/química , Condutometria , DNA Viral/química , DNA Viral/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Vírus Linfotrópico T Tipo 1 Humano/química , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Hibridização de Ácido Nucleico/genética
19.
J Nanosci Nanotechnol ; 18(6): 4014-4021, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442738

RESUMO

With the pace of development accelerating in printed electronics, the fabrication and application of conductive ink have been brought into sharp focus in recent years. The discovery of graphene also unfolded a vigorous research campaign. In this paper, we prepared graphene conductive ink and explored the feasibility of applying the ink to flexible paper-based circuit. Since experimental study concentrating upon ink formulation was insufficient, orthogonal test design was used in the optimization of preparation formula of conductive ink for the first time. The purpose of this study was to determine the effect of constituent dosage on conductivity of graphene conductive ink, so as to obtain the optimized formula and prepare graphene conductive ink with good conductivity. Characterization of optimized graphene conductive ink we fabricated showed good adhesion to substrate and good resistance to acid and water. The graphene concentration of the optimized ink reached 73.17 wt% solid content. Particle size distribution of graphene conductive ink was uniform, which was about 1940 nm. Static surface tension was 28.9 mN/m and equilibrium contact angle was 23°, demonstrating that conductive ink had good wettability. Scanning Electron Microscope (SEM) analysis was also investigated, moreover, the feasibility of lightening a light-emitting diode (LED) light was verified. The graphene conductive ink with optimized formula can be stored for almost eight months, which had potential applications in flexible paper-based circuit in the future.

20.
ACS Appl Mater Interfaces ; 8(51): 35091-35098, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27983802

RESUMO

Sensitive and accurate analysis of DNA is crucial to better understanding of DNA functions and early diagnosis of fatal disease. Herein, an enhanced photoelectrochemical (PEC) DNA biosensor was proposed based on dual-signal amplification via coupling inorganic-organic nanocomposites sensitization with λ-exonuclease (λ-Exo)-assisted target recycling. The short DNA sequence about chronic myelogenous leukemia (CML, type b3a2) was selected as target DNA (tDNA). ZnO nanoplates were deposited with CdS nanocrystals to form ZnO/CdS hetero-nanostructure, and it was used as PEC substrate for immobilizing hairpin DNA (hDNA). CdTe quantum dots (QDs) covalently linked with meso-tetra(4-carboxyphenyl)porphine (TCPP) to form CdTe/TCPP inorganic-organic nanocomposites, which were utilized as sensitization agents labeling at the terminal of probe DNA (pDNA). When the hDNA-modified sensing electrode was incubated with tDNA and λ-Exo, hDNA hybridized with tDNA, and meanwhile it could be recognized and cleaved by λ-Exo, resulting in the release of tDNA. The rest of nonhybridized hDNA would continuously hybridize with the released tDNA, cleave by λ-Exo, and set free the tDNA again. After λ-Exo-assisted tDNA recycling, more amounts of short DNA (sDNA) fragments coming from digestion of hDNA produced on the electrode and hybridized with CdTe/TCPP-labeled pDNA (pDNA-CdTe/TCPP conjugates). In this case, the sensitization of CdTe/TCPP inorganic-organic nanocomposites occurred, which evidently extend the absorption range and strengthened the absorption intensity of light energy, and accordingly the photocurrent signal significantly promoted. Through introducing the dual-signal amplification tactics, the developed PEC assay allowed a low calculated detection limit of 25.6 aM with a wide detection scope from 0.1 fM to 5 pM for sensitive and selective determination of tDNA.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , DNA , Exonucleases , Nanocompostos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...